Chem. Ber. 119, 156-161 (1986)

Organische Synthesen mit Übergangsmetallkomplexen, 131)

Hydantoine durch templatgesteuerte Kondensation von Isocyaniden mit Carbenkomplexen und Isocyanaten

Rudolf Aumann* und Eberhard Kuckert

Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-4400 Münster

Eingegangen am 6. Mai 1985

Durch Drei-Komponenten-Kondensation von Cyclohexylisocyanid mit $(CO)_5W = C_-(OEt)C_6H_5$ und Isocyanaten $(R-NCO,R=C_6H_5,CH_3,n-C_4H_9)$ und $t-C_4H_9)$ wurden Imidazolidinyliden-Komplexe $\mathbf{4a-d}$ erhalten und aus diesen durch oxidative Zersetzung mit $KMnO_4/Fe(NO_3)_3$ in hoher Ausbeute die 5-Alkoxyhydantoine $\mathbf{5a-d}$. Die Reaktion läuft über einen Keteniminkomplex, der sich aus dem Carbenkomplex und dem Isocyanid bildet und in einer 1,3-dipolaren Cycloaddition mit der C=N-Bindung des Isocyanates weiterreagiert.

Organic Syntheses with Transition Metal Complexes, 131)

Hydantoins via Template Condensation of Isocyanides with Carbene Complexes and Isocyanates

Imidazolidinylidene complexes $\mathbf{4a-d}$ were obtained by a three-component condensation of cyclohexyl isocyanide with $(CO)_5W = C(OEt)C_6H_5$ and isocyanates $(R-NCO, R=C_6H_5, CH_3, n-C_4H_9, t-C_4H_9)$. On oxidative decomposition with $KMnO_4/Fe(NO_3)_3$, $\mathbf{4a-d}$ give 5-alkoxyhydantoins $\mathbf{5a-d}$ in high yields. The reaction involves the intermediate formation of a ketenimine complex from the isocyanide and the carbene complex, which then reacts in a 1,3-dipolar fashion with the C=N bond of the isocyanate.

Durch Kondensation von Isocyaniden R-NC mit Carbenkomplexen $(CO)_5M=C(OEt)R'$ $(M=Cr, Mo, W; R'=C_6H_5, CH_3)$ 1 sind präparativ einfach und in guten Ausbeuten Keteniminkomplexe 2 zugänglich¹⁾.

Ketenimin-Liganden zeigen ein gegenüber metallfreien Keteniminen drastisch geändertes Reaktionsverhalten und ermöglichen damit eine Vielzahl ungewöhnlicher Syntheseschritte. Durch thermisch induzierte Kondensationsreaktionen z. B. lassen sich regioselektiv carbocyclische Vier-, Fünf- und Sechsringe aufbauen $^{1,2)}$. Reaktionssteuernd hierbei wirkt wahrscheinlich die hohe Bildungstendenz von 1,2-Bis(imino)chelat-Komplexen. Vielfältig nutzbar ist weiterhin die leicht eintretende Ketenimin/Aminocarben-Umlagerung $2 \rightarrow 3$, die z. B. durch protische Nucleophile Nu-H (Nu = OCH₃, SC₆H₅) induziert wird (1).

Offensichtlich ist die Reaktivität des Ketenimins im Komplex 2 so umgepolt, daß Nucleophile am terminalen und nicht — wie beim metallfreien Ketenimin der Fall — am zentralen Kohlenstoff angreifen.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009 – 2940/86/0101 – 0156 \$ 02.50/0

Wir finden nun, daß polare π -Bindungen $\overset{\delta\ominus}{a}=\overset{\delta\oplus}{b}$ nach gleichem Muster wie protische Nucleophile an 2 addiert werden (2).

$$(CO)_5M=C(OEt)R' + R-NC \longrightarrow (CO)_5M(R)N=C=C(OEt)R' \xrightarrow{NuH} (CO)_5M=C (OEt)R'(Nu)$$

$$1 (M = Cr, Mo, W; 2 3 NHR$$

$$R' = C_6H_5, CH_3)$$

Ketenimin-Liganden verhalten sich gegenüber polaren Doppelbindungen also wie 1,3-dipolare Reaktionspartner. Die Umpolung wird im Komplex dadurch ermöglicht, daß sich eine M=C-Bindung zum zentralen Kohlenstoff des Ketenimin-Liganden ausbilden kann.

Isocyanate ($a=b \triangleq R''N=CO$) z.B. reagieren mit 2 zu Imidazolidinyliden-Komplexen 4. Geht man von Carbenkomplexen 1 aus, so läßt sich die Reaktionssequenz (3) durchführen.

$$(CO)_{5}W=C(OE_{t})C_{6}H_{5} + c-C_{6}H_{11}-NC + R^{n}-N=C=O \longrightarrow (CO)_{5}W = N$$

$$c-C_{6}H_{11} \longrightarrow N$$

$$c-C$$

Die Isolierung von Ketenimin-Zwischenstufen ist nicht erforderlich. Die Darstellung von 4 erfolgt besonders einfach durch eine Drei-Komponenten-Kondensation. Hierzu wird eine Mischung aus 1 und dem entsprechenden Isocyanat in einem polaren, aprotischen Lösungsmittel wie Ether bei 25°C mit dem Isocyanid umgesetzt. Das Isocyanat muß im Überschuß vorgelegt werden, um die in einer Nebenreaktion sonst ablaufende Dismutation der Ketenimin-Komplexe²⁾ zu (blauen) Dimerisierungsprodukten zurückzudrängen.

Strukturaufklärung der Komplexe 4a-d

4a-d zeigen im Massenspektrum den jeweils erwarteten Molekülpeak und ein durch sukzessive Abspaltung von insgesamt fünf CO-Gruppen charakterisiertes Fragmentierungsmuster. Der (CO)₅W-Rest wird durch das IR-Spektrum im vC≡O-Bereich sowie das ¹³C-NMR-Spektrum (zwei Resonanzsignale um 200 ppm im Verhältnis 4:1, s. Exp. Teil) bestätigt. Auf eine Aminocarben-Gruppe weisen ¹³C-NMR-Signale bei 265-267, auf eine C≡O-Gruppe solche bei 151-153 ppm hin. Für letztere sprechen auch vC≡O-Banden im IR-Spektrum

Chem. Ber. 119 (1986)

bei ca. 1760 cm $^{-1}$. Die NMR-Signale der *ortho*-Wasserstoff(Kohlenstoff)atome der Komplexe $4\mathbf{a} - \mathbf{c}$ sind bei 25 °C stark verbreitert, die von $4\mathbf{d}$ hingegen scharf. Wir führen dies auf gehinderte Rotation um die $C - C_6H_5$ -Bindung zurück. Ein auf der NMR-Zeitskala rascher Austausch der magnetischen Umgebung der entsprechenden Kerne konnte anhand von Messungen bei verschiedenen Temperaturen sowie durch Spin-Sättigungs-Übertragung nachgewiesen werden (Abb. 1 zeigt dies exemplarisch für $4\mathbf{c}$). Wie aus Molekülmodellen ersichtlich, kann der Phenylkern aus sterischen Gründen nur dann rotieren, wenn gleichzeitig eine Drehung um die W = C-Bindung erfolgt ("Zahnrad-Mechanismus"). Bei $4\mathbf{d}$ ist dieser Vorgang durch sterische Wechselwirkung mit der N(t-Bu)-Gruppe zusätzlich eingeschränkt.

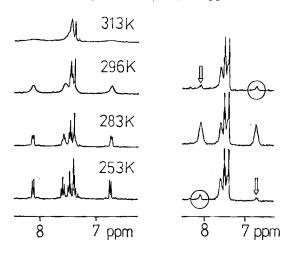


Abb. 1. Links: ¹H-NMR-Spektrum von 4c (CDCl₃, 300 MHz) im Aromatenbereich bei verschiedenen Temperaturen. (Die Koaleszenztemperatur der *ortho*-H-Atome liegt oberhalb der Zersetzungstemperatur.)

Rechts: Nachweis des Austauschs der magnetischen Umgebungen der ortho-H-Atome von 4c durch Spin-Sättigungs-Übertragung (25°C, 300 MHz). Der Pfeil kennzeichnet die jeweilige Einstrahlung, der Kreis das entsprechend geänderte Resonanzsignal

2,4-Imidazolidindione (Hydantoine) 5 durch oxidative Zersetzung von 4

Durch oxidative Zersetzung der Komplexe 4a – d mit KMnO₄/Fe(NO₃)₃ erhält man in sehr guten Ausbeuten die Hydantoine 5a – d (4).

$$4a-d + KMnO_4/Fe(NO_3)_3 \longrightarrow O \longrightarrow N \longrightarrow O$$

$$c-C_6H_{11} \longrightarrow O$$

$$\frac{5 \quad a \quad b \quad c \quad d}{R'' \quad C_8H_5 \quad CH_3 \quad n-Bu \quad t-Bu}$$

$$(4)$$

Die beiden Carbonylgruppen von 5 lassen sich im IR-Spektrum anhand der vC=O-Banden bei ca. 1770 und 1710 cm⁻¹, im ¹³C-NMR-Spektrum durch Re-

sonanzlinien bei 170 (N-C=O) und 155 ppm (N-CO-N) nachweisen³⁾. Die ¹H-NMR-Signale von 5d sind im Aromatenbereich bereits bei 25°C (300 MHz) stark verbreitert, als Folge einer durch sterische Wechselwirkung von Phenyl- und tert-Butylgruppe gehinderten Rotation.

Hydantoine sind biologisch interessante Wirkstoffe⁴⁾, zu deren Gewinnung zahlreiche Synthesen entwickelt wurden (darunter eine metallorganische, die von Alkinen, Isocyanaten und Eisencarbonyl ausgeht⁵⁾). Nach unserem Verfahren lassen sich bisher nicht beschriebene Substitutionsmuster in äußerst einfacher Weise erhalten.

Diese Arbeit wurde unterstützt von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

Umsetzung und Aufarbeitung unter Inertgas mit sorgfältig (!) getrockneten Lösungsmitteln. ¹H- und ¹³C-Kernresonanzspektren mit Bruker WM 300; IR-Schwingungsspektren mit Perkin-Elmer 298 bzw. 457; Massenspektren mit Finnigan MAT 312. Elementaranalysen mit Perkin-Elmer 240 Elemental Analyser. Säulenchromatographie mit Merck Kieselgel 100; Dünnschichtchromatographie mit Merck DC-Alufolien Kieselgel 60 F 254.

1. Drei-Komponenten-Kondensation von 1a mit Cyclohexylisocyanid und Isocyanaten

- 1.1. Allgemeine Arbeitsvorschrift: Zu einer Lösung von 0.50 g (1.09 mmol) 1a und 5.00 mmol des jeweiligen Isocyanats in 10 ml trockenem Diethylether tropft man bei 25 °C innerhalb von 10 min unter lebhaftem Rühren 0.12 g (0.13 ml, 1.09 mmol) Cyclohexylisocyanid. Nach 24 h wird eingedampft, in wenig Benzol aufgenommen und an Kieselgel chromatographiert (Säule 20×2.5 cm, Petrolether (40-60 °C)/Ether 20:1). Die Komplexe 4 sind in der orangeroten Fraktion enthalten.
- 1.2. Pentacarbonyl (3-cyclohexyl-5-ethoxy-2-oxo-1,5-diphenyl-4-imidazolidinyliden) wolf-ram(0) (4a): 0.65 g Phenylisocyanat werden nach 1.1. umgesetzt. Ausb. 0.52 g (69%) 4a, Schmp. 168°C. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 8.11$ (1H, s br.), 7.45 7.10 (8H, m), 6.58 (1H, s, aufgrund dynamischer Effekte verbreitert), 5.10 (1H, m, CH-N), 3.48 (2H, m, OCH₂), 2.64—1.28 (10H, m, CH₂), 1.42 (3H, t, CH₃). ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 267.16$ (s, W = C), 202.20 (s, CO trans), 196.06 (s, CO cis), 151.15 (s, C = O), 137.28 und 135.15 (s, quartäre C der Aromaten), 129.42 (d), 128.75 (d), 127.09 (d, ortho-C, br. infolge dynamischer Effekte), 126.17 (d), 125.02 (d, ortho-C, br. infolge dynamischer Effekte), 126.17 (d), 125.02 (d, ortho-C, br. infolge dynamischer Effekte), 126.17 (d), 58.26 (d, CH-N), 58.20 (t, OCH₂), 30.53 (t), 29.42 (t), 25.85 (t), 25.13 (t), 24.85 (t), 14.37 (q, CH₃). IR (Hexan): $vC \equiv O$ 2067 cm⁻¹ (70%), 1986 (50), 1950 (100), 1939 (100), 1932 (90); vC = O (KBr) 1766. MS (70 eV): m/z = 686 (M⁺, 17%), 602 (20, 3 CO), 546 (94, 5 CO), 544 (100), 318 (30), 236 (71), 180 (46), 105 (40), 77 (90), 55 (66). C₂₈H₂₆N₂O₇W (686.4) Ber. C 49.00 H 3.82 N 4.08 Gef. C 48.64 H 3.87 N 4.08
- 1.3. Pentacarbonyl (3-cyclohexyl-5-ethoxy-1-methyl-2-oxo-5-phenyl-4-imidazolidinyliden)-wolfram (0) (4b): 0.31 g Methylisocyanat werden nach 1.1. umgesetzt. Ausb. 0.45 g (66%) 4b, Schmp. 120°C (aus Ether). ¹H-NMR (CDCl₃, 300 MHz): $\delta = 8.10$ (1H, s br.), 7.54—7.30 (3H, m), 6.51 (1H, s, aufgrund dynamischer Effekte verbreitert), 4.97 (1H, m, CH–N), 3.35 und 3.15 (je 1H, m, diastereotope OCH₂), 2.58 (3H, s, NCH₃), 2.6—1.3 (10H, m, CH₂), 1.40 (3H, t, CH₃). ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 267.26$ (s, W=C), 202.20 (s, CO trans), 196.09 (s, CO cis), 152.34 (s, C=O), 136.67 (s, quartäre C des Aromaten),

Chem. Ber. 119 (1986)

129.47 (d), 128.97 (d, 2C), 127.09 und 124.47 (d, ortho-C, br. infolge dynamischer Effekte), 101.20 (s, C(OEt)Ph), 67.64 (d, CH – N), 57.93 (t, OCH₂), 30.50 (t), 29.41 (t), 26.22 (q, N – CH₃), 25.72 (t), 25.01 (t), 24.75 (t), 14.50 (q, CH₃). — IR (Hexan): $vC \equiv O$ 2064 cm⁻¹ (30%), 1983 (20), 1949 (100), 1939 (100), 1930 (70); vC = O 1757. — MS (70 eV): m/z = 624 (M⁺, 20%), 540 (38, — 3 CO), 482 (100), 451 (43), 118 (50), 105 (28), 77 (47), 55 (42).

C₂₃H₂₄N₂O₇W (624.3) Ber. C 44.25 H 3.87 N 4.49 Gef. C 44.11 H 3.78 N 4.22

1.4. (1-Butyl-3-cyclohexyl-5-ethoxy-2-oxo-5-phenyl-4-imidazolidinyliden) pentacarbonylwolfram(0) (4c): 0.54 g Butylisocyanat werden nach 1.1. umgesctzt. Ausb. 0.46 g (63%) 4c, Schmp. 114°C (aus Ether). — ¹H-NMR (CDCl₃, 300 MHz): $\delta=8.09$ und 6.51 (je 1 H, "s" br. bei 25°C, aufgrund dynamischer Effekte verbreitert), 7.41 und 7.32 (je 1 H, "d" br., meta-H), 7.39 (1 H, t, para-H), 3.95 (1 H, m, CH-N), 3.39 (1 H, m), 3.16—3.08 (2 H, m), 2.88 (1 H, m), 2.55 (2 H, m), 1.37 (3 H, t, CH₃ aus Ethyl), 1.96—1.13 (12 H, m, Cyclohexyl und Butyl), 0.79 (3 H, t, CH₃ aus Butyl). — ¹³C-NMR (CDCl₃, 75 MHz): $\delta=267.12$ (s, W=C), 202.16 (s, CO trans), 196.14 (s, CO cis), 152.64 (s, C=O), 137.35 (s, quartäre C des Aromaten), 129.45 (d), 129.01 (d, br.), 128.57 (d, br.), 126.69 (d, br.), 125.15 (d, br., Signale der ortho- und meta-ständigen C-Atome aufgrund dynamischer Effekte verbreitert), 101.65 (s, C(OEt)Ph), 67.65 (d, CH-N), 57.82 (t, OCH₂), 41.58 (t, N-CH₂), 30.47 (t), 29.48 (2 C, t), 25.72 (t), 25.06 (t), 24.80 (t), 20.16 (t), 14.35 (q), 13.36 (q). — IR (Hexan): vC=O 2066 cm⁻¹ (70%), 1986 (50), 1949 (100), 1938 (100), 1933 (90); vC=O 1770. — MS (70 eV): m/z=666 (M⁺, 24%), 582 (84, — 3 CO), 527 (100), 524 (100), 493 (46), 161 (27), 104 (72), 55 (74).

 $C_{26}H_{30}N_2O_7W$ (666.4) Ber. C 46.86 H 4.54 N 4.20 Gef. C 46.95 H 4.56 N 4.06

1.5. (1-tert-Butyl-3-cyclohexyl-5-ethoxy-2-oxo-5-phenyl-4-imidazolidinyliden) pentacarbonylwolfram(0) (4d): 0.54 g tert-Butylisocyanat werden nach 1.1. in Ether umgesetzt. Ausb. 0.15 g (10%) 4d, Schmp. 128 °C (aus Ether). — 1 H-NMR (CDCl₃, 300 MHz): δ = 8.00 und 6.49 (je 1 H, d scharf bei 25°C); 7.42, 7.32 und 7.22 (je 1 H, t), 4.87 (1 H, m, CH-N), 3.41 und 3.18 (je 1 H, diastereotope OCH₂), 1.35 (3 H, t, CH₃ aus Ethyl), 1.18 (9 H, s, t-Bu), 2.50–1.14 (10 H, m, Cyclohexyl). — 13 C-NMR (CDCl₃, 75 MHz): δ = 264.80 (s, W=C), 202.05 (s, CO trans), 196.24 (s, CO cis), 151.90 (s, C=O), 139.07 (s, quartäres C des Aromaten), 129.24 (2C, d), 128.17 (d), 127.05 (d), 125.21 (d), 103.33 (s, C(OEt)Ph), 68.02 (d, CH-N), 58.01 (t, OCH₂), 57.79 (s, CMe₃), 30.47 (t), 29.32 (t), 27.42 (3C, t-Bu), 25.79 (t), 24.99 (t), 24.83 (t), 14.32 (q, Et). — IR (Hexan): vC \equiv O 2065 cm $^{-1}$ (70%), 1984 (50), 1946 (100), 1936 (100), 1929 (100); vC = O 1760. — MS (70 eV): m/z = 666 (M $^+$, 10%), 582 (20, — 3 CO), 526 (61), 468 (18), 160 (22), 148 (26), 105 (43), 70 (61), 55 (100).

 $C_{26}H_{30}N_2O_7W$ (666.4) Ber. C 46.86 H 4.54 N 4.20 Gef. C 46.96 H 4.62 N 4.15

2. Abspaltung der Imidazolidindione 5 von 4

- 2.1. Allgemeine Arbeitsvorschrift: 0.30 mmol des Aminocarbenkomplexes 4 werden in 15 ml Aceton gelöst und mit 0.50 g KMnO₄ in 3 ml Wasser versetzt. Unter starkem Rühren gibt man portionsweise 0.15 g Fe(NO₃)₃ zu, wobei eine lebhafte Gasentwicklung einsetzt. Nach 1 h wird zentrifugiert, die Lösung eingedampft und der Rückstand an Kieselgel (Säule 10×2 cm, Petrolether (40-60 °C)/Ether 4:1) chromatographiert. 5 befindet sich jeweils in der ersten Fraktion.
- 2.2. 3-Cyclohexyl-5-ethoxy-1,5-diphenyl-2,4-imidazolidindion (5a): 0.21 g 4a werden nach 2.1. umgesetzt. Ausb. 0.08 g (73%) 5a, Schmp. 128 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.52 -7.10 (10 H, m), 4.11 (1 H, m, CH N), 3.66 und 3.60 (je 1 H, m, diastereotope OCH₂), 1.36 (3 H, t, CH₃), 2.24 1.22 (10 H, Cyclohexyl). ¹³C-NMR (CDCl₃, 75 MHz): δ = 169.22 (s, N C = O), 154.04 (s, N CO N), 135.18 und 134.92 (s, quartäre C der Phenylgruppen); 128.99, 128.52, 125.82, 125.14, 122.20 (d, insgesamt 10 C), 91.72 (s, C(OEt)Ph), 59.29 (t, OCH₂),

51.95 (d, CH-N); 29.30, 29.22, 25.57 (2C), 24.77 (jeweils t, CH₂ des Cyclohexylrests), 15.56 (q, CH₃). – IR (KBr): vC = 0 1770 und 1705 cm⁻¹. – MS (70 eV): m/z = 378 (M⁺, 33%), 334 (20), 252 (14), 251 (14), 180 (36), 176 (73), 105 (100), 77 (66).

C₂₃H₂₆N₂O₃ (378.6) Ber. C 72.99 H 6.92 N 7.40 Gef. C 72.98 H 6.96 N 7.19

2.3. 3-Cyclohexyl-5-ethoxy-1-methyl-5-phenyl-2,4-imidazolidindion (**5b**): 0.19 g **4b** werden nach 2.1. umgesetzt. Ausb. 0.08 g (78%) **5b**, Schmp. 95°C. - ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.3$ (5H, m), 3.89 (1H, m, CH-N), 3.38 (2H, m, diastereotope OCH₂), 2.69 (3H, s, NCH₃), 1.28 (3H, t, CH₃), 2.08-1.16 (10H, Cyclohexyl). - ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 170.44$ (s, N-C=O), 155.81 (s, N-CO-N), 134.61 (s, quartäres C der Phenylgruppen); 129.21, 128.68 (2C), 125.77 (2C), insgesamt 5C des Aromaten; 90.41 (s, C(OEt)Ph), 59.20 (t, OCH₂), 51.70 (d, CH-N); 29.48, 29.40, 25.63 (2C), 24.82 (jeweils t, CH₂ des Cyclohexylrests), 24.44 (q, NCH₃), 14.77 (q, CH₃). - IR (KBr): vC=O 1770 und 1715 cm⁻¹. - MS (70 eV): m/z = 316 (M⁺, 0.06%), 314 (2.6), 272 (94), 235 (54), 189 (92), 162 (78), 118 (80), 105 (100), 77 (80).

C₁₈H₂₄N₂O₃ (316.4) Ber. C 68.33 H 7.65 N 8.86 Gef. C 68.05 H 7.63 N 8.73

2.4. *1-Butyl-3-cyclohexyl-5-ethoxy-5-phenyl-2,4-imidazolidindion* (5c): 0.20 g 4c werden nach 2.1. umgesetzt. Ausb. 0.08 g (80%) 5c, farbloses Öl. — ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.36 - 7.44$ (5H, m), 3.97 (1H, m, CH-N), 4.49 (2H, q, NCH₂), 3.32 und 2.89 (je 1 H, m, diastereotope OCH₂), 1.45 (2H, m), 1.36 (3H, t, CH₃), 2.16-1.21 (12H, m, Cyclohexyl und Butyl), 0.84 (3H, t, CH₃ aus Butyl). — ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 170.31$ (s, N-C=O), 156.00 (s, N-CO-N), 135.38 (s, quartäres C der Phenylgruppen); 129.11, 128.54 (2C), 125.84 (2C), insgesamt 5C des Aromaten; 91.02 (s, C(OEt)Ph), 58.96 (t, OCH₂), 51.63 (d, CH-N), 39.86 (2H, m, NCH₂); 30.81, 29.48, 29.41, 25.65 (2C), 24.85 (2C, jeweils t, CH₂ des Cyclohexyl- und Butylrests), 14.64 (q), 13.46 (q). — IR (KBr): vC=O 1775 und 1706 cm⁻¹. — MS (70 eV): m/z = 358 (M⁺, 0.3%), 314 (100), 271 (12), 232 (24), 231 (23), 105 (74), 77 (25).

C₂₁H₃₀N₂O₃ (358.5) Ber. C 70.35 H 8.44 N 7.82 Gef. C 70.58 H 8.05 N 7.72

2.5. 1-tert-Butyl-3-cyclohexyl-5-ethoxy-5-phenyl-2,4-imidazolidindion (5d): 0.20 g 4d werden nach 2.1. umgesetzt. Ausb. 0.09 g (84%) 5d, Schmp. 118°C. - ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.48 - 7.34$ (5 H, m), 3.94 (1 H, m, CH – N), 3.60 und 3.50 (je 1 H, m, diastereotope OCH₂), 1.39 (3 H, t, CH₃ aus Ethyl), 1.38 (9 H, t-Bu), 2.20 – 1.18 (10 H, m, Cyclohexyl). – IR (KBr): vC = O 1764 und 1708 cm⁻¹. – MS (70 eV): m/z = 358 (M⁺, 0.5%), 343 (46), 314 (27), 258 (26), 176 (60), 148 (56), 105 (100), 84 (52), 77 (42), 70 (53), 57 (52).

C₂₁H₃₀N₂O₃ (358.5) Ber. C 70.35 H 8.44 N 7.82 Gef. C 70.16 H 8.30 N 7.20

 ^{1) 12.} Mitteil.: R. Aumann und H. Heinen, Angew. Chem., zur Veröffentlichung eingereicht.
 2) R. Aumann und H. Heinen, Chem. Ber. 118, 952 (1985).

³⁾ J. Moskal und A. Moskal, Synthesis 1979, 794.

⁴⁾ J. K. Landquist, in Comprehensive Heterocyclic Chemistry, S. 166ff., Pergamon Press, Oxford 1984.

⁵⁾ Y. Ohshiki, K. Kinugasa, T. Minami und T. Aqawa, J. Org. Chem. 35, 2136 (1970).